Research
Discovery-oriented research:
Natural resilience to abiotic stress: understanding physiological and molecular responses, adaptive strategies and its limitation.
- Responses to environmental stresses | Avoidance and tolerance mechanisms | Overcoming limitations
- Food quality traits associated with genetic inheritance and crops’ physiological status


Translational research:
Adapting the environment to crops. Focus on controlled environment agriculture (CEA).
- Identify the optimal environmental setting (light recipes, nutrients, etc.) to improve plant performance and enhance varietys’ nutritional value for human consumption and/or industry. “Get the most outcomes with minimal inputs.”
- Harness natural genetic variety (germplasm) and artificial (gene-edited) to improve physiological and nutraceutical traits under CEA conditions. “The most suitable for what is needed!”



Current Projects:
2024-2027 “Light Pulsing in Vertical Farming For Sustainable Fresh Produce – LightPuls-VF”. Co-Principal Investigator (PI), £582k. BBSRC-UKRI-PACE. Industrial Partner – Intelligent Growth Solutions Ltd.
2024-2027 “Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications – CE-CannPharm”. Co-PI, £664k. BBSRC-UKRI-PACE. Industrial Partner – GlassPharms Ltd.
2024-2027 “Optimising Genetics by Management (GxM) Interactions to Enhance Productivity and Quality in Indoor Lettuce Cultivation – GxM-Lettuce”. Researcher. BBSRC-UKRI-PACE. Industrial Partners – Intelligent Growth Solutions Ltd and Tozer Seeds Ltd.
2024-2027 “Automated, accurate, in-field detection of potato diseases by precision computer vision approaches – PhenoTUB”. Researcher. Innovate UK. Industrial Partner – B-hive Innovations Ltd.
2023-2024 “Machine learning for identifying leaf reflectance proxies for rapidly deriving crop photosynthetic parameters – MLSynth”. PI, £20k Hutton Seedcorn call.
Past research
2021-2023 “Upscaling adoption and exploitation of a wide diversity of Iron and Zinc-rich beans by rural populations in Africa – ZIRON Pulse”. BBSRC-UKRI project
Publications
Journals
- Huertas, R.; Karpinska, B.; Ngala, S.; Mkandawire, B.; Maling’a, J.; Wajenkeche, E.; Kimani, P.; Boesch, C.; Stewart, D.; Hancock, R.; Foyer, C. (2024) Biofortification of common bean (Phaseolus vulgaris L) with iron and zinc Achievements and challenges, Food and Energy Security, 12(2), Art. e406
- Huertas, R.; Allwood, J.W.; Hancock, R.D.; Stewart, D. (2022) Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method, Food Chemistry, 387, Art. 132900
Prior to appointment
- Huertas, R.; Ding, N.; Scheible, W.; Udvardi, M. (2024) Transcriptional, metabolic, physiological and developmental responses to nitrogen limitation in switchgrass (Panicum virgatum), Environmental and Experimental Botany, 22, Art. 105770
- Huertas, R.; Torres-Jerez, I.; Curtin, S.J.; Scheible, W.; Udvardi, M. (2023) Medicago truncatula PHO2 genes have distinct roles in phosphorus homeostasis and symbiotic nitrogen fixation, Frontiers in Plant Science, 14, Art. 1211107
- Miller, S.S.; Dornbusch, M.R.; Farmer, A.; Huertas, R.; Gutierrez-Gonzalez, J.J.; Young, N.D.; Samac, D.A.; Curtin, S.J. (2022) Alfalfa (Medicago sativa L.) pho2 mutant plants hyperaccumulate phosphate, G3 Genes|Genomes|Genetics, 12(6), Art. Jkac096
- Cobos-Porras, L.; Rubia, M.I.; Huertas, R.; Kum, D.; Dalton, D.A.; Udvardi, M.K.; Arrese-Igor, C.; Larrainzar, E. (2021) Increased Ascorbate Biosynthesis Does Not Improve Nitrogen Fixation Nor Alleviate the Effect of Drought Stress in Nodulated Medicago truncatula Plants, Frontiers in Plant Science, Art. 686075
- Ding, N.; Huertas, R.; Torres-Jerez, I.; Liu, W.; Watson, B.; Scheible, W.R.; Udvardi, M. (2021) Transcriptional, metabolic, physiological and developmental responses of switchgrass to phosphorus limitation, Plant Cell and Environment, 44(1), 186-202
- Ho-Plagaro, T.; Huertas, R.L.; Tamayo-Navarrete, M.A.; Blancaflor, E.; Gavara, N.; A-Garrido, J.M.G. (2021) A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation, Plant and Cell Physiology, 62(2), 306-320
- Ho-Plagaro, T.; Morcillo, R.J.L.; Tamayo-Navarrete, M.I.; Huertas, R.; Molinero-Rosales, N.; López-Ráez, J.A.; Macho, A.P.; García-Garrido, J.M. (2021) DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis, New Phytologist, 229(1), 548-562
- Villar, I.; Larrainzar, E.; Milazzo, L.; Pérez-Rontomé, C.; Rubio, M.C.; Smulevich, G.; Martínez, J.I.; Wilson, M.T.; Reeder, B.; Huertas, R.; Abbruzzetti, S.; Udvardi, M.; Becana, M. (2021) A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite, Frontiers in Plant Science, 11, Art. 600336
- Larrainzar, E.; Villar, I.; Rubio, M.C.; Pérez-Rontomé, C.; Huertas, R.; Sato, S.; Mun, J.H.; Becana, M. (2020) Hemoglobins in the legume-Rhizobium symbiosis, New Phytologist, 228(2), 472-484
- Villar, I.; Larrainzar, E.; Milazzo, L.; Pérez-Rontomé, C.; Rubio, M.C.; Smulevich, G.; Martinez, J.I.; Wilson, M.T.; Reeder, B.; Huertas, R.; Abbruzzetti, S.; Udvardi, M.; Becana, M. (2020) A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite, Frontiers in Plant Science, 11, Art. 600336
- Huertas, R.; Catalá, R.; Jiménez-Gómez, J.M.; Castellano, M.M.; Crevillén, P.; Piñeiro, M.; Jarillo, J.A.; Salinas, J. (2019) Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity, Plant Cell, 31(2), 537-554
- Ho-Plagaro, T.; Huertas, R.; Tamayo-Navarrete, M.I.; Ocampo, J.A.; García-Garrido, J.M. (2018) An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis, Plant Methods, 14, Art. 34
- Barrero-Gil, J.; Huertas, R.; Rambla, J.L.; Granell, A.; Salinas, J. (2016) Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments, Plant Cell and Environment, 39(10), 2303-2318
- Martín-Rodríguez, J.A.; Huertas, R.; Ho-Plágaro, T.; Ocampo, J.A.; Turecková, V.; Tarkowská, D.; Ludwig-Müller, J.; Garcia-Garrido, J. M. (2016) Gibberellin-Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato, Frontiers in Plant Science, 7, Art. 1273
- Asins, M.J.; Villalta, I.; Aly, M.M.; Olías, R.; De Morales, P.A.; Huertas, R.; Li, J.; Jaime-Pérez, N.; Haro, R.; Raga, V.; Carbonell, E. A.; Belver, A. (2013) Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis, Plant Cell and Environment, 36(6), 1171-1191
- Huertas, R.; Rubio, L.; Cagnac, O.; García-Sánchez, M.J.; Alché, J.D.; Venema, K.; Fernández, J.A.; Rodríguez-Rosales, M.P. (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato, Plant Cell and Environment, 36(12), 2135-2149
- Belver, A.; Olías, R.; Huertas, R.; Rodríguez-Rosales, M.P. (2012) Involvement of SlSOS2 in tomato salt tolerance, Bioengineered, 3(5), 298-302
- Huertas, R.; Olías, R.; Eljakaoui, Z.; Gálvez, F.J.; Li, J.; De Morales, P.A.; Belver, A.; Rodríguez-Rosales, M.P. (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato, Plant Cell and Environment, 35(8), 1467-1482
- Rodriguez-Rosales, M.P.; Galvez, F.J.; Huertas, R.; Aranda, M.N.; Baghour, M.; Cagnac, O.; Venema, K. (2009) Plant NHX cation/proton antiporters, Plant signaling, 4(4), 265-276